

## **Circular Measure**

1.



The diagram shows the sector AOB of a circle, centre O and radius 15 cm. Angle AOB is  $\frac{\pi}{6}$ radians. Point C lies on OB such that CB is a cm. AC is a straight line.

(a) Find the exact value of a such that the area of triangle AOC is equal to the area of the shaded region ACB.

Area of  $ACB = \frac{1}{2} \times \frac{15}{6} \times 15^2 = \frac{15}{4} (15-a) \sin \frac{\pi}{6}$ Area of  $ACB = \frac{1}{2} \times \frac{\pi}{6} \times 15^2 = \frac{15}{2} \times 15(15-a) \sin \frac{\pi}{6}$   $A = \frac{9r^2}{2}$ 

area of sector (ra
$$A = \frac{\theta r^2}{2}$$

$$\frac{15^{1}}{12} \pi = \frac{15}{2} (15-4)$$

$$\frac{5}{2}\pi^{2}15-4$$
 $a=15-\frac{5}{2}\pi$  cm

(b) For the value of a found in  $\operatorname{\boldsymbol{part}}$  (a) , find the perimeter of the shaded region. Give your answer correct to 1 decimal place.

$$AC = \sqrt{15^2 + \left(\frac{5}{2}\pi\right)^2 - 2 \times 15 \times \frac{5}{2}\pi \times \cos\left(\frac{\pi}{6}\right)}$$

$$= 9.09 \text{ cm}$$

$$= 9.09 \text{ cm}$$

$$= 2 \times 15 \times \frac{5}{2}\pi \times \cos\left(\frac{\pi}{6}\right)$$

$$= 100 \text{ length of arc (rad)}$$

length of arc (rad):

L=Ac

= 512 cm

!. Perimeter of shaded aren = 241 cm

2. In this question, all lengths are in centimetres and all angles are in radians.



The diagram shows a circle, centre O, radius 8. The points A, B and C lie on the circumstance of the circle. The chord AB has length 10.

(a) Show the angle BOA is 1.35 correct to 2 decimal places.

$$\overrightarrow{GA} = 8 \text{ cm} \text{ as radius of Circle}$$

$$(\overrightarrow{AB})^2 = (\overrightarrow{OA})^2 + (\overrightarrow{OB})^2 - 2(\overrightarrow{OA})(\overrightarrow{OB}) \cos(\angle BOA)$$

$$\angle BOA = \cos^2\left(\frac{(\overrightarrow{OA})^2 + (\overrightarrow{OB})^2 - (\overrightarrow{AB})^2}{2(\overrightarrow{OA})(\overrightarrow{OB})}\right) = \cos^2\left(\frac{8^2 + 6^2 - 10^2}{2 \times 8 \times 8}\right)$$

$$= 1.35 \text{ rad} (2 \text{ dp})$$

(b) Given that the minor arc BC has a length of 18, find angle BOC.

$$C = \frac{9r}{8} = \frac{18}{8} = 2.25 \text{ rad}$$

[2]

(c) Find the area of the minor sector AOC.

$$A = \frac{8r^2}{2} = \frac{(212 - 2.25 - 1.35) \times 8^2}{2}$$

$$= 85.86 cm^2 (2dp)$$

3. In this question all lengths are in centimetres.



The diagram shows a circle, centre O, radius a. The lines PT and QT are tangents to the circle at P and Q respectively. Angle POQ is 2Ø radians.

(a) In the case when the area of the sector OPQ is equal to the area of the shaded region, show that  $tan \emptyset = 2\emptyset$ .

area of OTQ = 
$$\frac{Qa^2}{2}$$
  $\frac{Qa^2}{2}$   $\frac{Qa^2}{2}$   $\frac{a}{2}$   $\frac$ 

$$2 \times \frac{86}{2} = \frac{1}{2} \frac{1}{4} tunp$$
 as area of ota =  $2 \times area of oscillator =  $2 \times area of oscillator = 2 \times area of oscillator =  $2 \times area of oscillator = 2 \times area of oscillator =  $2 \times area of oscillator = 2 \times area of oscillator = 2 \times area of oscillator =  $2 \times area of oscillator = 2 \times area o$$$$$ 

(b) In the case when the perimeter of the sector OPQ is equal to half the perimeter of the shaded region, find an expression for tan  $\emptyset$  in terms of  $\emptyset$ . [3]

Perimeter of 
$$OPQ = 2u + 2ga$$
  
Perimeter of  $PPQ = 2atang + 2ga$   
 $4u + 4ga = 2atang + 2ga$   
 $4 + 2g = 2tang$   
 $tang = 2 + g$ 



4.



The diagram shows a circle with centre O and radius r. OAB and OCD are sectors of a circle with centre O and radius x, where  $0 < x \le r$ . Angle AOB = angle COD =  $\theta$  radians, where  $0 < \theta < \pi$ .

(a) Find,in terms of r, x and  $\theta$ , the perimeter of the shaded region.

(b) Find,in terms of r, x and  $\theta$ , the area of the shaded region.

$$A = \frac{9x^2}{2} \qquad A = 11^2 - 2x \frac{9x^2}{2}$$
$$= 11^2 - 9x^2$$

It is given that x can vary and that r and  $\theta$  are constant.

(c) Write down the least possible area of the shaded region in terms of r and  $\theta$ .

[2]

[3]

[1]



The diagram shows a circle, centre O, radius 10cm. The points A and B lie on the circumference of the circle. The tangent at A and the tangent at B meet at the point C. The angle AOB is  $\theta$  radians. The length of the the minor arc AB is 28cm.

[1]

[3]

(a) Find the value of  $\theta$ .



(b) Find the perimeter of the shaded region.

A rea of ACB= { x[lotan(1+1)]sin(n-2.8) -563.04cm2

Area of JAOB = 2×102 Sinz 6 = 16.75 cm2

Arca of AOB = 2.8×10 2 = 140cm²

563.04+16.75-140=439.79

=440 cm

Or Area of SAOC = 2 x 1 o tan (14) x 10

= 289.89cm2

A rea or minor Scator = 2.8×102 = 140cm²

Shaded aren = 2×289.89-140 = 439.78 = 440 cm

## 6. In this question all lengths are in metres.



The diagram shows a circle, centre O, radius 7.The points A and B lie on the circumference of the circle. The line BC is a tangent to the circle at the point B such that the length of BC is 24. The length of the minor arc AB is 12. 25.

$$C = \frac{9r}{7} = 1.75 \text{ rad}$$

$$A = \frac{\left[ t \omega^{-1} \left( \frac{24}{7} \right) + 1.75 \right] \times 7^{2}}{2}$$

$$= 74.41 M^{2} (24)$$

